Dear Readers I apologise for all the information and some of it technical and some you have seen before. This is Courtesy of spaceweather.com. By now you will have my own interpretation of these radiations and frequencies this is just as it comes without my own views accept to say; this is not good for our planet or us, and note the fact about chemical effects.
There will also be four shackisback,blogspot.com (some browsers.co.uk)
There will also be four shackisback,blogspot.com (some browsers.co.uk)
Cosmic Rays in the Atmosphere |
Readers, thank you for your patience while we continue to develop this new section of Spaceweather.com. We've been working to streamline our data reduction, allowing us to post results from balloon flights much more rapidly, and we have developed a new data product, shown here:
This plot displays radiation measurements not only in the stratosphere, but also at aviation altitudes. Dose rates are expessed as multiples of sea level. For instance, we see that boarding a plane that flies at 25,000 feet exposes passengers to dose rates ~10x higher than sea level. At 40,000 feet, the multiplier is closer to 50x. These measurements are made by our usual cosmic ray payload as it passes through aviation altitudes en route to the stratosphere over California.
What is this all about? Approximately once a week, Spaceweather.com and the students of Earth to Sky Calculus fly space weather balloons to the stratosphere over California. These balloons are equipped with radiation sensors that detect cosmic rays, a surprisingly "down to Earth" form of space weather. Cosmic rays can seed clouds, trigger lightning, and penetrate commercial airplanes. Furthermore, there are studies ( #1, #2, #3, #4) linking cosmic rays with cardiac arrhythmias and sudden cardiac death in the general population. Our latest measurements show that cosmic rays are intensifying, with an increase of more than 13% since 2015:
Why are cosmic rays intensifying? The main reason is the sun. Solar storm clouds such as coronal mass ejections (CMEs) sweep aside cosmic rays when they pass by Earth. During Solar Maximum, CMEs are abundant and cosmic rays are held at bay. Now, however, the solar cycle is swinging toward Solar Minimum, allowing cosmic rays to return. Another reason could be the weakening of Earth's magnetic field, which helps protect us from deep-space radiation.
The radiation sensors onboard our helium balloons detect X-rays and gamma-rays in the energy range 10 keV to 20 MeV. These energies span the range of medical X-ray machines and airport security scanners.
The data points in the graph above correspond to the peak of the Reneger-Pfotzer maximum, which lies about 67,000 feet above central California. When cosmic rays crash into Earth's atmosphere, they produce a spray of secondary particles that is most intense at the entrance to the stratosphere. Physicists Eric Reneger and Georg Pfotzer discovered the maximum using balloons in the 1930and it is what we are measuring todays
ANTHROPOGENIC SPACE WEATHER: Space weather can have a big effect on human society. Sometimes human society returns the favor. A new study entitled "Anthropogenic Space Weather" just published in Space Science Reviews outlines how human activity shapes the space around our planet. A prime example: Human radio transmissions form a bubble in space protecting us from "killer electrons."
Co-author Phil Erickson of MIT's Haystack Observatory explains: "As Van Allen discovered in the 1950s and 1960s, there are two radiation belts surrounding Earth with a 'slot' between them. Our research is focused on the the outer radiation belt, which contains electrons with energies of a million or more electron-volts. These 'killer electrons' have the potential to damage spacecraft, even causing permanent failures."
During strong geomagnetic storms, the outer radiation belt expands, causing the killer electrons to approach Earth. But NASA's Van Allen Probes, a pair of spacecraft sent to explore the radiation belts, found that something was stopping the particles from getting too close.
"The penetration of the outer belt stopped right at the same place as the edge of VLF strong transmissions from humans on the ground," says Erickson. "These VLF transmissions penetrate seawater, so we use them to communicate with submarines. They also propagate upward along Earth's magnetic field lines, forming a 'bubble' of VLF waves that reaches out to about 2.8 Earth-radii--the same spot where the ultra-relativistic electrons seem to stop.
"The penetration of the outer belt stopped right at the same place as the edge of VLF strong transmissions from humans on the ground," says Erickson. "These VLF transmissions penetrate seawater, so we use them to communicate with submarines. They also propagate upward along Earth's magnetic field lines, forming a 'bubble' of VLF waves that reaches out to about 2.8 Earth-radii--the same spot where the ultra-relativistic electrons seem to stop.
VLF radio waves clear the area of killer electrons "via a wave-particle gyro-resonance," says Erickson. Essentially, they are just the right frequency to scatter the particles away from our planet.
"Because powerful VLF transmitters have been operating since before the dawn of the Space Age, it is possible that we have never observed the radiation belts in their pristine, unperturbed state," notes John Foster, a colleague of Erickson at MIT and an early leader of this research.
Other anthropogenic effects on space weather include artificial radiation belts created by nuclear tests, high-frequency wave heating of the ionosphere, and cavities in Earth's magnetotail formed by chemical release experiments. Download the complete paper here.
GBP 35.94
"Because powerful VLF transmitters have been operating since before the dawn of the Space Age, it is possible that we have never observed the radiation belts in their pristine, unperturbed state," notes John Foster, a colleague of Erickson at MIT and an early leader of this research.
Other anthropogenic effects on space weather include artificial radiation belts created by nuclear tests, high-frequency wave heating of the ionosphere, and cavities in Earth's magnetotail formed by chemical release experiments. Download the complete paper here.
FROM HERE ABOVE UNDERLINED I HAVE COPIED THE LOT. IT IS MAINLY COMPOSED OF AUTHORS AND DATA, HOWEVER THE ABSTRACT IS VITAL.
Anthropogenic Space
Weather
·
T. I. GombosiEmail
author
·
D. N. Baker
·
A. Balogh
·
P. J. Erickson
·
J. D. Huba
·
L. J. Lanzerotti
·
First Online:
DOI:
10.1007/s11214-017-0357-5
Cite this article as:
Gombosi, T.I., Baker, D.N., Balogh, A. et al. Space Sci Rev (2017). doi:10.1007/s11214-017-0357-5
·
29Shares
·
84Downloads
Part of the following
topical collections:
Part of the following
topical collections:
Abstract
Anthropogenic
effects on the space environment started in the late 19th century and reached
their peak in the 1960s when high-altitude nuclear explosions were carried out
by the USA and the Soviet
Union . These explosions
created artificial radiation belts near Earth that resulted in major damages to
several satellites. Another, unexpected impact of the high-altitude nuclear
tests was the electromagnetic pulse (EMP ) that can have devastating effects over a large
geographic area (as large as the continental United States ). Other anthropogenic impacts on the space
environment include chemical release experiments, high-frequency wave heating
of the ionosphere and the interaction of VLF waves with the radiation belts.
This paper reviews the fundamental physical process behind these phenomena and
discusses the observations of their impacts.
Keywords
High-altitude nuclear explosions Artificial
radiation belts Electromagnetic pulse (EMP ) Damage to satellites Space
Debris Chemical releases HF heating VLF waves and radiation
belts
The Scientific
Foundation of Space Weather
Edited by Rudolf
von Steiger, Daniel Baker, André Balogh, Tamás Gombosi, Hannu Koskinen
and Astrid Veronig
Part of the following
topical collections:
Abstract
Anthropogenic
effects on the space environment started in the late 19th century and reached
their peak in the 1960s when high-altitude nuclear explosions were carried out
by the USA and the Soviet
Union . These explosions
created artificial radiation belts near Earth that resulted in major damages to
several satellites. Another, unexpected impact of the high-altitude nuclear
tests was the electromagnetic pulse (EMP ) that can have devastating effects over a large
geographic area (as large as the continental United States ). Other anthropogenic impacts on the space
environment include chemical release experiments, high-frequency wave heating
of the ionosphere and the interaction of VLF waves with the radiation belts.
This paper reviews the fundamental physical process behind these phenomena and
discusses the observations of their impacts.
Keywords
High-altitude nuclear explosions Artificial
radiation belts Electromagnetic pulse (EMP ) Damage to satellites Space
Debris Chemical releases HF heating VLF waves and radiation
belts
The Scientific
Foundation of Space Weather
Edited by Rudolf
von Steiger, Daniel Baker, André Balogh, Tamás Gombosi, Hannu Koskinen
and Astrid Veronig
References
1.
B. Abel, R.M.
Thorne, Electron scattering loss in Earth’s inner magnetosphere: 1. Dominant
physical processes. J. Geophys. Res. 103(A2), 2385–2396 (1998). doi:10.1029/97JA02919ADSCrossRefGoogle Scholar
2.
L. Allen, J.L.
Beavers, W.A. Whitaker, J.A. Welch, R.B. Walton, Project Jason measurement of
trapped electrons from a nuclear device by sounding rockets. Proc. Natl. Acad.
Sci. USA 45(8),
1171–1190 (1959)ADSCrossRefGoogle Scholar
3.
D.N. Baker, How to
cope with space weather. Science 297(5586), 1486–1487 (2002). doi:10.1126/science.1074956CrossRefGoogle Scholar
4.
R.C. Baker, W.M.
Strome, Magnetic disturbance from a high-altitude nuclear explosion.
J. Geophys. Res. 67(12),
4927–4928 (1962)ADSCrossRefGoogle Scholar
5.
D.N. Baker, R.
Balstad, J.M. Bodeau, E. Cameron, J.F. Fennell, G.M. Fisher, K.F. Forbes, P.M.
Kintner, L.G. Leffler, W.S. Lewis, J.B. Reagan, A.A. Small III , T.A. Stansell, L. Strachan Jr., Severe
Space Weather Events-Understanding Societal and Economic Impacts Workshop
Report. Technical report ISBN: 0-309-12770-X, Committee on the Societal and
Economic Impacts of Severe Space Weather Events, National Research Council
(2008)
6.
D.N. Baker, A.N.
Jaynes, V.C. Hoxie, R.M. Thorne, J.C. Foster, X. Li, J.F. Fennell, J.R. Wygant,
S.G. Kanekal, P.J. Erickson, W. Kurth, W. Li, Q. Ma, Q. Schiller, L. Blum, D.M.
Malaspina, A. Gerrard, L.J. Lanzerotti, An impenetrable barrier to
ultrarelativistic electrons in the Van Allen radiation belts. Nature 515(7528), 531–534 (2014). doi:10.1038/nature13956ADSCrossRefGoogle Scholar
7.
D.N. Baker, A.N.
Jaynes, S.G. Kanekal, J.C. Foster, P.J. Erickson, J.F. Fennell, J.B. Blake, H.
Zhao, X. Li, S.R. Elkington, M.G. Henderson, G.D. Reeves, H.E. Spence, C.A.
Kletzing, J.R. Wygant, Highly relativistic radiation belt electron
acceleration, transport, and loss: large solar storm events of March and June
2015. J. Geophys. Res. 121(7), 6647–6660 (2016). doi:10.1002/2016JA022502CrossRefGoogle Scholar
8.
R.C. Baumann,
Ariel I: The First International Satellite. Technical report NASA SP-43,
NASA (1963)
9.
T.F. Bell, H.G.
James, U.S. Inan, J.P. Katsufrakis, The apparent spectral broadening of VLF
transmitter signals during transionospheric propagation. J. Geophys.
Res. 88(A6),
4813 (1983). doi:10.1029/JA088iA06p04813ADSCrossRefGoogle Scholar
10.
P.A. Bernhardt,
R.A. Roussel-Dupre, M.B. Pongratz, G. Haerendel, A. Valenzuela, D.A. Gurnett,
R.R. Anderson, Observations and theory of the AMPTE magnetotail barium
releases. J. Geophys. Res. 92(A6), 5777–5794 (1987). doi:10.1029/JA092iA06p05777ADSCrossRefGoogle Scholar
11.
P.A. Bernhardt,
L.M. Duncan, C.A. Tepley, Artificial airglow excited by high-power radio waves.
Science 242(4881),
1022–1027 (1988). doi:10.1126/science.242.4881.1022ADSCrossRefGoogle Scholar
12.
P.A. Bernhardt,
L.M. Duncan, C.A. Tepley, Heater-induced cavities as optical tracers of plasma
drifts. J. Geophys. Res. 94(A6), 7003–7010 (1989). doi:10.1029/JA094iA06p07003ADSCrossRefGoogle Scholar
13.
W.K. Berthold, A.K.
Harris, H.J. Hope, World-wide effects of hydromagnetic waves due to Argus.
J. Geophys. Res. 65(8),
2233–2239 (1960)ADSCrossRefGoogle Scholar
14.
L. Biermann,
Kometenschweife und Solare Korpuskularstrahlung. Z. Astrophys. 29, 274–286 (1951)ADSGoogle Scholar
15.
H.A. Bomke, I.A.
Balton, H.H. Grote, A.K. Harris, Near and distant observations of the 1962 Johnston Island
high-altitude nuclear tests. J. Geophys. Res. 69(15), 3125–3136 (1964)ADSCrossRefGoogle Scholar
16.
H.A. Bomke, A.K.
Harris, J.W. Walker, W.J. Ramm, The nature of worldwide geomagnetic
disturbances generated by the Starfish explosion of July 9, 1962.
J. Geophys. Res. 71(11),
2777–2789 (1966). doi:10.1029/JZ071i011p02777ADSCrossRefGoogle Scholar
17.
S. Breiner, Effect
of nuclear detonation on the geomagnetic field at Palo Alto , California .
J. Geophys. Res. 68(1),
335–337 (1963). doi:10.1029/JZ068i001p00335ADSCrossRefGoogle Scholar
18.
W.L. Brown,
in Observations of the Transient Behavior of Electrons in the
Artificial Radiation Belts, ed. by B.M. McCormac (Springer, Dordrecht,
1966), pp. 610–633. doi:10.1007/978-94-010-3553-8_44Google Scholar
19.
W.L. Brown, J.D.
Gabbe, The electron distribution in the Earth’s radiation belts during July
1962 as measured by Telstar. J. Geophys. Res. 68(3), 607–618 (1963). doi:10.1029/JZ068i003p00607ADSCrossRefGoogle Scholar
20.
W.L. Brown, J.D.
Gabbe, W. Rosenzweig, Results of the Telstar radiation experiments. Bell Syst. Tech. J. 42(4), 1505–1560 (1963)CrossRefGoogle Scholar
21.
K. Bullough,
Satellite observations of power line harmonic radiation. Space Sci. Rev. 35(2), 175–183 (1983). doi:10.1007/BF00242242ADSCrossRefGoogle Scholar
22.
B. Caner, Prompt
world-wide geomagnetic effects of high-latitude nuclear explosions, Master’s
thesis, The University of British Columbia, Vancouver, BC Canada, 1964. https://open.library.ubc.ca/cIRcle/collections/ubctheses/831/items/1.0053563
23.
D.L. Carpenter,
Whistler studies of the plasmapause in the magnetosphere: 1. Temporal
variations in the position of the knee and some evidence on plasma motions near
the knee. J. Geophys. Res. 71(3), 693–709 (1966). doi:10.1029/JZ071i003p00693ADSCrossRefGoogle Scholar
24.
D.L.
Carpenter, Very Low Frequency Space Radio Research at Stanford
1950–1990, 1st edn. (Lulu.com, Stanford, 2015). ISBN 9781329884106Google Scholar
25.
D. Carpenter, J.
Lemaire, The plasmasphere boundary layer. Ann. Geophys. 22, 4291–4298 (2004)ADSCrossRefGoogle Scholar
26.
M. Casaverde, A.
Giesecke, R. Cohen, Effects of the nuclear explosion over Johnston Island
observed in Peru on July 9, 1962 . J. Geophys. Res. 68(9), 2603–2611 (1963). doi:10.1029/JZ068i009p02603ADSCrossRefGoogle Scholar
27.
D.M. Chapin, C.S.
Fuller, G.L. Pearson, A new silicon p-n junction photocell for
converting solar radiation into electrical power. J. Appl. Phys. 25(5), 676–677 (1954). doi:10.1063/1.1721711ADSCrossRefGoogle Scholar
28.
N. Christofilos,
The Argus experiment. Proc. Natl. Acad. Sci. 45, 1144–1152 (1959a)ADSCrossRefGoogle Scholar
29.
N.C. Christofilos,
The Argus experiment. J. Geophys. Res. 64(8), 869–875 (1959b). doi:10.1029/JZ064i008p00869ADSCrossRefGoogle Scholar
30.
M.A. Clilverd, C.J.
Rodger, N.R. Thomson, J.B. Brundell, T. Ulich, J. Lichtenberger, N. Cobbett,
A.B. Collier, F.W. Menk, A. Seppälä, P.T. Verronen, E. Turunen, Remote sensing
space weather events: Antarctic-Arctic Radiation-Belt (Dynamic) Deposition-VLF
Atmospheric Research Konsortium network. Space Weather 7(4), S04001 (2009). doi:10.1029/2008SW000412ADSCrossRefGoogle Scholar
31.
M.B. Cohen, N.G.
Lehtinen, U.S. Inan, Models of ionospheric VLF absorption of powerful ground
based transmitters. Geophys. Res. Lett. 39(24), L24101 (2012). doi:10.1029/2012GL054437ADSCrossRefGoogle Scholar
32.
S.A. Colgate, The
phenomenology of the mass motion of a high altitude nuclear explosion.
J. Geophys. Res. 70(13),
3161–3173 (1965). doi:10.1029/jz070i013p03161ADSCrossRefGoogle Scholar
33.
E.E. Conrad, G.A.
Gurtman, G. Kweder, M.J. Mandell, W.W. White, Collateral Damage to Satellites
from an EMP Attack. Technical report DTRA-IR-10-22, Defense
Threat Reduction Agency, Fort Belvoir , Virginia (2010)
34.
A.L. Cullington, A
man-made or artifical aurora. Nature 182(4646), 1365–1366 (1958). doi:10.1038/1821365a0ADSCrossRefGoogle Scholar
35.
R.J. Danchik, An
overview of transit development. APL Tech. Dig. 1(1), 18–26 (1998)Google Scholar
36.
R.G. D’Arcy, S.A.
Colgate, Measurements at the southern magnetic conjugate region of the fission
debris from the Starfish nuclear detonation. J. Geophys. Res. 70(13), 3147–3159 (1965). doi:10.1029/JZ070i013p03147ADSCrossRefGoogle Scholar
37.
A.C. Dickieson, The
Telstar experiment. Bell Syst. Tech. J. 42, 739–746 (1963)CrossRefGoogle Scholar
38.
A.C. Durney, H.
Elliot, R.J. Hynds, J.J. Quenby, Satellite observations of the energetic
particle flux produced by the high-altitude nuclear explosion of July 9, 1962.
Nature 195,
1245–1248 (1962). doi:10.1038/1951245a0ADSCrossRefGoogle Scholar
39.
A.C. Durney, H.
Elliot, R.J. Hynds, J.J. Quenby, The artificial radiation belt produced by the
Starfish nuclear explosion. Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci. 281(1384), 565–583 (1964)ADSCrossRefGoogle Scholar
40.
P. Dyal, Particle
and field measurements of the starfish diamagnetic cavity. J. Geophys.
Res. 111(A12),
12211 (2006). doi:10.1029/2006JA011827CrossRefGoogle Scholar
41.
P.J. Edwards, J.S.
Reid, Effects of nuclear explosion starfish prime observed at Hobart , Tasmania , July 9, 1962 . J. Geophys. Res. 69(17), 3607–3612 (1964). doi:10.1029/JZ069i017p03607ADSCrossRefGoogle Scholar
42.
H. Elliot, in Some
Cosmic Ray and Radiation Belt Observations Based on Data from the Anton 302 G-M
Counter in Ariel I, ed. by B.M. McCormac (Springer, Dordrecht, 1966),
pp. 76–99. doi:10.1007/978-94-010-3553-8_7Google Scholar
43.
H. Elliot, J.J.
Quenby, The Samoan artificial aurora. Nature 83, 810 (1959). doi:10.1038/183810a0ADSCrossRefGoogle Scholar
44.
J.F. Fennell, H.C.
Koons, J.L. Roeder, J.B. Blake, Spacecraft charging: observations and
relationship to satellite anomalies, in Spacecraft Charging Technology,
Proceedings of the Seventh International Conference, ed. by R.A. Harris
(European Space Agency ESTEC, Noordwijk, 2001), pp. 279–285Google Scholar
45.
J.F. Fennell, S.G.
Claudepierre, J.B. Blake, T.P. O’Brien, J.H. Clemmons, D.N. Baker, H.E. Spence,
G.D. Reeves, Van Allen probes show that the inner radiation zone contains no
MeV electrons: ECT/MagEIS data. Geophys. Res. Lett. 42(5), 1283–1289 (2015). doi:10.1002/2014GL062874ADSCrossRefGoogle Scholar
46.
A.
Finkbeiner, The Jasons: The Secret History of Science’s Postwar Elite (Viking,
New York , 2006)Google Scholar
47.
R.E. Fischell,
Effect of the artificial radiation belt on solar power systems. APL Tech. Dig. 2(2), 8–13 (1962a)Google Scholar
49.
J.C. Foster, T.J.
Rosenberg, Electron precipitation and VLF emissions associated with cyclotron
resonance interactions near the plasmapause. J. Geophys. Res. 81(13), 2183–2192 (1976). doi:10.1029/JA081i013p02183ADSCrossRefGoogle Scholar
50.
J.S. Foster, E.
Gjelde, W.R. Graham, R.J. Hermann, H.M. Kluepfel, R.L. Lawson, G.K. Soper, L.L.
Wood, J.B. Woodard, Report of the Commission to Assess the Threat to the United
States from Electromagnetic Pulse (EMP ) Attack: Executive Report. Technical report,
United States Congress, Washington ,
DC (2004)
51.
J.S. Foster, E.
Gjelde, W.R. Graham, R.J. Hermann, H.M. Kluepfel, R.L. Lawson, G.K. Soper, L.L.
Wood, J.B. Woodard, Report of the Commission to Assess the Threat to the United
States from Electromagnetic Pulse (EMP ) Attack: Critical National Infrastructures.
Technical report A2473, United States Congress, Washington , DC
(2008)
52.
J.C. Foster, P.J.
Erickson, D.N. Baker, A.N. Jaynes, E.V. Mishin, J.F. Fennel, X. Li, M.G.
Henderson, S.G. Kanekal, Observations of the impenetrable barrier, the
plasmapause, and the VLF bubble during the 17 March 2015 storm.
J. Geophys. Res. Space Phys. 121(6), 5537–5548 (2016). doi:10.1002/2016JA022509ADSCrossRefGoogle Scholar
53.
A.C. Fraser-Smith,
A weekend increase in geomagnetic activity. J. Geophys. Res. 84(A5), 2089–2096 (1979). doi:10.1029/JA084iA05p02089ADSCrossRefGoogle Scholar
54.
A.C. Fraser-Smith,
Effects of man on geomagnetic activity and pulsations. Adv. Space Res. 1(2), 455–466 (1981). doi:10.1016/0273-1177(81)90321-5ADSCrossRefGoogle Scholar
55.
A.C. Fraser-Smith,
D.B. Coates, Large-amplitude ULF electromagnetic fields from bart. Radio
Sci. 13(4),
661–668 (1978). doi:10.1029/RS013i004p00661ADSCrossRefGoogle Scholar
56.
J.F. Gabites, D.S.
Rowles, Summary of visual observations of the aurora following the nuclear
explosion above Johnston
island on 9 July 1962 . N.Z. J. Geol. Geophys. 5(6), 920–924 (1962). doi:10.1080/00288306.1962.10420041CrossRefGoogle Scholar
57.
Y.I. Galperin, A.D.
Boliunova, Recording of effects of high-altitude thermonuclear explosion of July 9, 1962 , on the Cosmos 5 satellite. Kosm. Issled. (Cosm.
Res.) 2(5),
763–772 (1964)Google Scholar
58.
L.A.
Gebhard, Evolution of Naval Radio-Electronics and Contributions of the Naval
Research Laboratory. Technical report, Naval Research Laboratory, Washington , DC
(1979)
59.
J. Gilbert, J.
Kapperman, W. Radasky, E. Savage, The Late Time (E3) High-Altitude
Electromagnetic Pulse (HEMP) and Its Impact on the US Power Grid. Technical
report Meta-R-321, Metatech Corporation, Goleta , California (2010)
60.
J.L. Green, S.
Boardsen, L. Garcia, W.W.L. Taylor, S.F. Fung, B.W. Reinisch, On the origin of
whistler mode radiation in the plasmasphere. J. Geophys. Res. 110(A3), 03201 (2005). doi:10.1029/2004JA010495CrossRefGoogle Scholar
61.
G. Haerendel, A.
Valenzuela, O.H. Bauer, M. Ertl, H. Foppl, K.-H. Kaiser, W. Lieb, J. Loidl, F.
Melzner, B. Merz, H. Neuss, P. Parigger, E. Rieger, R. Schoning, J. Stocker, E.
Wiezorrek, E. Molona, The Li/Ba release experiments of the ion release module.
IEEE Trans. Geosci. Remote Sens. GE-23(3), 253–258 (1985). doi:10.1109/TGRS.1985.289523ADSCrossRefGoogle Scholar
62.
D. Hambling , US Air Force wants to plasma bomb the sky using tiny
satellites. New Sci. (August 20, 2016 )
63.
J.B. Harold, A.B.
Hassam, Two ion fluid numerical investigations of solar wind gas releases.
J. Geophys. Res. 99(A10),
19325–19340 (1994). doi:10.1029/94JA00790ADSCrossRefGoogle Scholar
64.
A.B. Hassam, J.D.
Huba, Structuring of the AMPTE magnetotail barium releases. Geophys. Res.
Lett. 14(1),
60–63 (1987). doi:10.1029/GL014i001p00060ADSCrossRefGoogle Scholar
65.
R.A.
Helliwell, Whistlers and Related Ionospheric Phenomena, 1st edn.
(Stanford University Press, Stanford, 1965). ISBN 0486445720Google Scholar
66.
R.A. Helliwell, VLF
wave stimulation experiments in the magnetosphere from Siple Station, Antarctica . Rev. Geophys. 26(3), 551 (1988). doi:10.1029/RG026i003p00551ADSCrossRefGoogle Scholar
67.
R. Helliwell, E.
Gehrels, Observations of magneto-ionic duct propagation using man-made signals
of very low frequency. Proc. Inst. Radio Eng. 46(4), 785–787 (1958)Google Scholar
68.
R.A. Helliwell,
J.P. Katsufrakis, M.L. Trimpi, Whistler-induced amplitude perturbation in VLF
propagation. J. Geophys. Res. 78(22), 4679–4688 (1973). doi:10.1029/JA078i022p04679ADSCrossRefGoogle Scholar
69.
R.A. Helliwell,
J.P. Katsufrakis, T.F. Bell, R. Raghuram, VLF line radiation in the Earth’s
magnetosphere and its association with power system radiation. J. Geophys.
Res. 80(31),
4249–4258 (1975). doi:10.1029/JA080i031p04249ADSCrossRefGoogle Scholar
70.
W.N. Hess, The
artificial radiation belt made on July 9, 1962 . J. Geophys. Res. 68(3), 667–683 (1963). doi:10.1029/JZ068i003p00667ADSCrossRefGoogle Scholar
71.
W.N. Hess, P.
Nakada, Artificial radiation belt discussed in symposium at Goddard Space Center . Science 138(3536), 53–54 (1962)ADSCrossRefGoogle Scholar
72.
R.L. Heyborne, R.L.
Smith, R.A. Helliwell, Latitudinal cutoff of VLF signals in the ionosphere.
J. Geophys. Res. 74(9),
2393–2397 (1969). doi:10.1029/JA074i009p02393ADSCrossRefGoogle Scholar
73.
R.B. Horne, M. Lam,
J.C. Green, Energetic electron precipitation from the outer radiation belt
during geomagnetic storms. Geophys. Res. Lett. 36(19), L19104 (2009). doi:10.1029/2009gl040236ADSCrossRefGoogle Scholar
74.
W.L. Imhof, H.D.
Voss, M. Walt, E.E. Gaines, J. Mobilia, D.W. Datlowe, J.B. Reagan, Slot region
electron precipitation by lightning, VLF chorus, and plasmaspheric hiss.
J. Geophys. Res. 91(A8),
8883 (1986). doi:10.1029/JA091iA08p08883ADSCrossRefGoogle Scholar
75.
U.S. Inan, R.A. Helliwell,
DE-1 observations of VLF transmitter signals and wave-particle interactions in
the magnetosphere. Geophys. Res. Lett. 9(9), 917–920 (1982). doi:10.1029/GL009i009p00917ADSCrossRefGoogle Scholar
76.
U.S. Inan, T.F.
Bell, D.L. Carpenter, R.R. Anderson, Explorer 45 and Imp 6 observations in the
magnetosphere of injected waves from the Siple Station VLF transmitter.
J. Geophys. Res. 82(7),
1177–1187 (1977). doi:10.1029/JA082i007p01177ADSCrossRefGoogle Scholar
77.
U.S. Inan, T.F. Bell,
H.C. Chang, Particle precipitation induced by short-duration VLF waves in the
magnetosphere. J. Geophys. Res. 87(A8), 6243 (1982). doi:10.1029/JA087iA08p06243ADSCrossRefGoogle Scholar
78.
U.S. Inan, H.C.
Chang, R.A. Helliwell, Electron precipitation zones around major ground-based
VLF signal sources. J. Geophys. Res. 89(A5), 2891 (1984). doi:10.1029/JA089iA05p02891ADSCrossRefGoogle Scholar
79.
U.S. Inan, H.C.
Chang, R.A. Helliwell, W.L. Imhof, J.B. Reagan, M. Walt, Precipitation of
radiation belt electrons by man-made waves: a comparison between theory and
measurement. J. Geophys. Res. 90(A1), 359–369 (1985). doi:10.1029/JA090iA01p00359ADSCrossRefGoogle Scholar
80.
U.S. Inan, J.V.
Rodriguez, S. Lev-Tov, J. Oh, ionospheric modification with a VLF transmitter.
Geophys. Res. Lett. 19(20),
2071–2074 (1992). doi:10.1029/92GL02378ADSCrossRefGoogle Scholar
81.
U.S. Inan, T.F.
Bell, J. Bortnik, J.M. Albert, Controlled precipitation of radiation belt
electrons. J. Geophys. Res. 108(A5), 051186 (2003). doi:10.1029/2002JA009580CrossRefGoogle Scholar
82.
A.N. Jaynes, D.N.
Baker, H.J. Singer, J.V. Rodriguez, T.M. Loto’aniu, A.F. Ali, S.R. Elkington,
X. Li, S.G. Kanekal, S.G. Claudepierre, J.F. Fennell, W. Li, R.M. Thorne, C.A.
Kletzing, H.E. Spence, G.D. Reeves, Source and seed populations for
relativistic electrons: their roles in radiation belt changes. J. Geophys.
Res. 120(9),
7240–7254 (2015). doi:10.1002/2015JA021234CrossRefGoogle Scholar
83.
C.B. Jones, M.K.
Doyle, L.H. Berkhouse, F.S. Calhoun, E.J. Martin, Operation ARGUS 1958,
Technical report DNA 6039F, Defense
Nuclear Agency, Washington, DC (1982)
84.
S.L. Kahalas, P.
Newman, Interpretation of early magnetic transients caused by high-altitude
nuclear detonations. J. Res. Natl. Bur. Stand. D 69, 1179–1183 (1965)Google Scholar
85.
A. Karinen, K.
Mursula, T. Ulich, J. Manninen, Does the magnetosphere behave differently on
weekends? Ann. Geophys. 20(8), 1137–1142 (2002). doi:10.5194/angeo-20-1137-2002ADSCrossRefGoogle Scholar
86.
W.J. Karzas, R.
Latter, Electromagnetic radiation from a nuclear explosion in space. Phys.
Rev. 126,
1919–1926 (1962). doi:10.1103/PhysRev.126.1919ADSMATHCrossRefGoogle Scholar
87.
P.J. Kellogg, E.P.
Ney, J.R. Winckler, Geophysical effects associated with high-altitude
explosions. Nature 183(4658),
358–361 (1959). doi:10.1038/183358a0ADSCrossRefGoogle Scholar
88.
D.J. Kessler, B.G.
Cour-Palais, Collision frequency of artificial satellites: the creation of a
debris belt. J. Geophys. Res. 83(A6), 2637–2646 (1978). doi:10.1029/JA083iA06p02637ADSCrossRefGoogle Scholar
89.
G. Klawitter, K.
Herold, M. Oexner, Langwellen- und Längstwellenfunk, 3rd edn.
(Siebel: Verlag für Technik und Handwerk, Amazon.com, 2000).
ISBN 3896320432Google Scholar
90.
C.A. Kletzing, W.S.
Kurth, M. Acuna, R.J. MacDowall, R.B. Torbert, T. Averkamp, D. Bodet, S.R.
Bounds, M. Chutter, J. Connerney, D. Crawford, J.S. Dolan, R. Dvorsky, G.B.
Hospodarsky, J. Howard, V. Jordanova, R.A. Johnson, D.L. Kirchner, B.
Mokrzycki, G. Needell, J. Odom, D. Mark, R. Pfaff, J.R. Phillips, C.W. Piker,
S.L. Remington, D. Rowland, O. Santolik, R. Schnurr, D. Sheppard, C.W. Smith,
R.M. Thorne, J. Tyler, The Electric and Magnetic Field Instrument Suite and
Integrated Science (EMFISIS) on RBSP, in The Van Allen Probes Mission (Springer,
Boston, 2013), pp. 127–181. doi:10.1007/978-1-4899-7433-4_5CrossRefGoogle Scholar
91.
H. Klinkrad, Space
Debris (Wiley, New York ,
2010). doi:10.1002/9780470686652.eae325CrossRefGoogle Scholar
92.
H.C. Koons, B.C.
Edgar, A.L. Vampola, Precipitation of inner zone electrons by whistler mode
waves from the VLF transmitters UMS and NWC. J. Geophys. Res. 86(A2), 640 (1981). doi:10.1029/JA086iA02p00640ADSCrossRefGoogle Scholar
93.
S.M. Krimigis, G.
Haerendel, G. Gloeckler, R.W. Mcentire, E.G. Shelley, R.B. Decker, G.
Paschmann, A. Valenzuela, T.A. Potemra, F.L. Scarf, A.L. Brinca, H. Lühr, AMPTE
lithium tracer releases in the solar wind: observations inside the
magnetosphere. J. Geophys. Res. 91(A2), 1339–1353 (1986). doi:10.1029/JA091iA02p01339ADSCrossRefGoogle Scholar
94.
P. Kulkarni , U.S. Inan, T.F. Bell, J. Bortnik, Precipitation
signatures of ground-based VLF transmitters. J. Geophys. Res. Space
Phys. 113(A7),
A07214 (2008). doi:10.1029/2007JA012569ADSGoogle Scholar
95.
M.F. Larsen, Winds
and shears in the mesosphere and lower thermosphere: results from four decades
of chemical release wind measurements. J. Geophys. Res. 107(A8), 28–12814 (2002). doi:10.1029/2001JA000218CrossRefGoogle Scholar
96.
J.A. Lawrie, V.B.
Gerard, P.J. Gill, Magnetic effects resulting from the Johnston island high altitude nuclear explosions. N.Z. J.
Geol. Geophys. 4(2),
109–124 (1961). doi:10.1080/00288306.1961.10423131CrossRefGoogle Scholar
97.
J. Leiphart, R.
Zeek, L. Bearce, E. Toth, Penetration of the ionosphere by very-low-frequency
radio signals-interim results of the LOFTI I experiment. Proc. IRE 50(1), 6–17 (1962). doi:10.1109/JRPROC.1962.288269CrossRefGoogle Scholar
98.
X. Li, R.S.
Selesnick, D.N. Baker, A.N. Jaynes, S.G. Kanekal, Q. Schiller, L. Blum, J.
Fennell, J.B. Blake, Upper limit on the inner radiation belt MeV electron
intensity. J. Geophys. Res. 120(2), 1215–1228 (2015). doi:10.1002/2014JA020777CrossRefGoogle Scholar
99.
C.L. Longmire,
Justification and Verification of High-Altitude EMP Theory: Part I. Technical report Technical Note
368, Mission Research Corporation, Santa Barbara , California
(1986)
100.
J.P. Luette, C.G. Park ,
R.A. Helliwell, The control of the magnetosphere by power line radiation.
J. Geophys. Res. 84(A6),
2657–2660 (1979). doi:10.1029/JA084iA06p02657ADSCrossRefGoogle Scholar
101.
R. Lüst, in Barium
Cloud Experiments in the Upper Atmosphere, ed. by J.A.M. Bleeker, J. Geiss,
M.C.E. Huber (Springer, Dordrecht, 2001), pp. 179–187. doi:10.1007/978-94-010-0320-9_6Google Scholar
102.
H. Maeda,
Geomagnetic disturbances due to nuclear explosion. J. Geophys. Res. 64(7), 863–864 (1959). doi:10.1029/JZ064i007p00863ADSCrossRefGoogle Scholar
103.
B.H. Mauk, N.J.
Fox, S.G. Kanekal, R.L. Kessel, D.G. Sibeck, A. Ukhorskiy, Science objectives
and rationale for the Radiation Belt Storm Probes mission. Space Sci.
Rev. 179(1–4),
3–27 (2013). doi:10.1007/s11214-012-9908-yADSCrossRefGoogle Scholar
104.
J.S. Mayo, H. Mann,
F.J. Witt, D.S. Peck, H.K. Gummel, W.L. Brown, The command system malfunction. Bell Syst. Tech. J. 42, 1631–1657 (1963)CrossRefGoogle Scholar
105.
C.E. McIlwain,
Coordinates for mapping the distribution of magnetically trapped particles.
J. Geophys. Res. 66(11),
3681–3691 (1961). doi:10.1029/JZ066i011p03681ADSCrossRefGoogle Scholar
106.
C.E. McIlwain, The
radiation belts, natural and artificial. Science 142(3590), 355–361 (1963). doi:10.1126/science.142.3590.355ADSCrossRefGoogle Scholar
107.
K.G. McKay, A
germanium counter. Phys. Rev. 76, 1537 (1949). doi:10.1103/PhysRev.76.1537ADSCrossRefGoogle Scholar
108.
R.R. Meier, M.H.
Stevens, J.M.C. Plane, J.T. Emmert, G. Crowley, I. Azeem, L.J. Paxton, A.B.
Christensen, A study of space shuttle plumes in the lower thermosphere.
J. Geophys. Res. 116(A12),
12322 (2011). doi:10.1029/2011JA016987CrossRefGoogle Scholar
109.
S.B. Mende, G.R.
Swenson, S.P. Geller, J.H. Doolittle, G. Haerendel, A. Valenzuela, O.H. Bauer,
Dynamics of a barium release in the magnetospheric tail. J. Geophys.
Res. 94(A12),
17063–17083 (1989). doi:10.1029/JA094iA12p17063ADSCrossRefGoogle Scholar
110.
M. Mendillo, The
effect of rocket launches on the ionosphere. Adv. Space Res. 1(2), 275–290 (1981). doi:10.1016/0273-1177(81)90302-1ADSCrossRefGoogle Scholar
111.
M. Mendillo, J.
Baumgardner, D.P. Allen, J. Foster, J. Holt, G.R.A. Ellis, A. Klekociuk, G.
Reber, Spacelab-2 plasma depletion experiments for ionospheric and radio
astronomical studies. Science 238(4831), 1260–1264 (1987). doi:10.1126/science.238.4831.1260ADSCrossRefGoogle Scholar
112.
D.P. Miles, R.P.
Lepping, Magnetic disturbances due to the high-altitude nuclear explosion of July 9, 1962 . J. Geophys. Res. 69(3), 547–548 (1964). doi:10.1029/JZ069i003p00547ADSCrossRefGoogle Scholar
113.
S. Millman (ed.), A
History of Engineering and Science in the Bell System: Physical Sciences (1925–1980) (Bell Telephone Laboratories, New Jersey,
1983)Google Scholar
114.
O. Molchanov, A.
Rozhnoi, M. Solovieva, O. Akentieva, J.J. Berthelier, M. Parrot, F. Lefeuvre,
P.F. Biagi, L. Castellana, M. Hayakawa, Global diagnostics of the ionospheric
perturbations related to the seismic activity using the VLF radio signals
collected on the DEMETER satellite. Nat. Hazards Earth Syst. Sci. 6(5), 745–753 (2006)ADSCrossRefGoogle Scholar
115.
R.C. Moore, U.S.
Inan, T.F. Bell, E.J. Kennedy, ELF waves generated by modulated HF heating of
the auroral electrojet and observed at a ground distance of ∼4400 km. J. Geophys. Res. 112(A5), 05309 (2007). doi:10.1029/2006JA012063CrossRefGoogle Scholar
116.
B.J. O’Brien, C.D.
Laughlin, J.A. Van Allen, Geomagnetically trapped radiation produced by a
high-altitude nuclear explosion on July 9, 1962 . Nature 195(4845), 939–943 (1962a). doi:10.1038/195939a0ADSCrossRefGoogle Scholar
117.
B.J. O’Brien, C.D.
Laughlin, J.A. Van Allen, L.A. Frank, Measurements of the intensity and
spectrum of electrons at 1000-kilometer altitude and high latitudes.
J. Geophys. Res. 67(4),
1209–1225 (1962b). doi:10.1029/JZ067i004p01209ADSCrossRefGoogle Scholar
118.
Y. Omura, D. Nunn,
H. Matsumoto, M.J. Rycroft, A review of observational, theoretical, and
numerical studies of VLF triggered emissions. J. Atmos. Terr. Phys. 53(5), 351–368 (1991)ADSCrossRefGoogle Scholar
119.
K. Papadopoulos,
A.S. Sharma, C.L. Chang, On the efficient operation of a plasma ELF antenna
driven by modulation of ionospheric currents. Comments Plasma Phys. Control.
Fusion 13,
1 (1989)Google Scholar
120.
C.G. Park ,
R.A. Helliwell, Whistler precursors: a possible catalytic role of power line
radiation. J. Geophys. Res. 82(25), 3634–3642 (1977). doi:10.1029/JA082i025p03634ADSCrossRefGoogle Scholar
121.
C.G. Park ,
T.R. Miller, Sunday decreases in magnetospheric VLF wave activity.
J. Geophys. Res. 84(A3),
943–950 (1979). doi:10.1029/JA084iA03p00943ADSCrossRefGoogle Scholar
122.
M. Parrot, World
map of ELF/VLF emissions as observed by a low-orbiting satellite. Ann.
Geophys., Atmos. Hydrospheres Space Sci. 8(2), 135–146 (1990)Google Scholar
123.
M. Parrot,
Observations of power line harmonic radiation by the low-altitude AUREOL 3
satellite. J. Geophys. Res. 99(A3), 3961–3969 (1994). doi:10.1029/93JA02544ADSCrossRefGoogle Scholar
124.
M. Parrot, Y.
Zaslavski, Physical mechanisms of man-made influences on the magnetosphere.
Surv. Geophys. 17(1),
67–100 (1996). doi:10.1007/BF01904475ADSCrossRefGoogle Scholar
125.
M. Parrot, J.A.
Sauvaud, J.J. Berthelier, J.P. Lebreton, First in-situ observations of strong
ionospheric perturbations generated by a powerful VLF ground-based transmitter.
Geophys. Res. Lett. 34(11),
11111 (2007). doi:10.1029/2007GL029368ADSCrossRefGoogle Scholar
126.
T.R. Pedersen, E.A.
Gerken, Creation of visible artificial optical emissions in the aurora by
high-power radio waves. Nature 433(7025), 498–500 (2005). doi:10.1038/nature03243ADSCrossRefGoogle Scholar
127.
T. Pedersen, B.
Gustavsson, E. Mishin, E. MacKenzie, H.C. Carlson, M. Starks, T. Mills, Optical
ring formation and ionization production in high-power HF heating experiments
at HAARP. Geophys. Res. Lett. 36(18), 18107 (2009). doi:10.1029/2009GL040047ADSCrossRefGoogle Scholar
128.
G.F. Pieper, Injun:
a radiation research satellite. APL Tech. Dig. 1(1), 3–7 (1961)Google Scholar
130.
G.F. Pieper,
A second radiation belt from the July 9, 1962 , nuclear detonation. J. Geophys. Res. 68(3), 651–655 (1963). doi:10.1029/JZ068i003p00651ADSCrossRefGoogle Scholar
131.
P.R. Pisharoty,
Geomagnetic disturbances associated with the nuclear explosion of July 9.
Nature 196,
822–824 (1962). doi:10.1038/196822b0ADSCrossRefGoogle Scholar
132.
R. Raghuram, T.F.
Bell, R.A. Helliwell, J.P. Katsufrakis, A quiet band produced by VLF
transmitter signals in the magnetosphere. Geophys. Res. Lett. 4(5), 199–202 (1977). doi:10.1029/GL004i005p00199ADSCrossRefGoogle Scholar
133.
K. Rastani , U.S. Inan, R.A. Helliwell , DE 1
observations of siple transmitter signals and associated sidebands.
J. Geophys. Res. 90(A5),
4128 (1985). doi:10.1029/JA090iA05p04128ADSCrossRefGoogle Scholar
134.
D.L. Reasoner,
Chemical-release mission of CRRES. J. Spacecr. Rockets 29(4), 580–584 (1992). doi:10.2514/3.25502ADSCrossRefGoogle Scholar
135.
C.S. Roberts,
Coordinates for the study of particles trapped in the Earth’s magnetic field: a
method of converting from B, L to R, λλ coordinates. J. Geophys. Res. 69(23), 5089–5090 (1964). doi:10.1029/JZ069i023p05089ADSCrossRefGoogle Scholar
136.
C.J. Rodger, M.A.
Clilverd, T. Ulich, P.T. Verronen, E. Turunen, N.R. Thomson, The atmospheric
implications of radiation belt remediation. Ann. Geophys. 24(7), 2025–2041 (2006). doi:10.5194/angeo-24-2025-2006ADSCrossRefGoogle Scholar
137.
J. Roquet, R.
Schlich, E. Selzer, Evidence of two distinct synchronous world impetuses for
the magnetic effects of the nuclear high-altitude detonation of July 9, 1962.
J. Geophys. Res. 68(12),
3731–3732 (1963). doi:10.1029/JZ068i012p03731ADSCrossRefGoogle Scholar
138.
W. Rosenzweig, H.K.
Gummel, F.M. Smits, Solar cell degradation under 1 MeV electron
bombardment. Bell
Syst. Tech. J. 42(2),
399–414 (1963)CrossRefGoogle Scholar
139.
J.A. Sauvaud, T.
Moreau, R. Maggiolo, J.-P. Treilhou, C. Jacquey, A. Cros, J. Coutelier, J.
Rouzaud, E. Penou, M. Gangloff, High-energy electron detection onboard DEMETER:
the IDP spectrometer, description and first results on the inner belt. Planet.
Space Sci. 54(5),
502–511 (2006). doi:10.1016/j.pss.2005.10.019ADSCrossRefGoogle Scholar
140.
J.-A. Sauvaud, R.
Maggiolo, C. Jacquey, M. Parrot, J.-J. Berthelier, R.J. Gamble, C.J. Rodger,
Radiation belt electron precipitation due to VLF transmitters: satellite
observations. Geophys. Res. Lett. 35(9), 09101 (2008). doi:10.1029/2008GL033194ADSCrossRefGoogle Scholar
141.
E. Savage, J.
Gilbert, W. Radasky, The Early Time (E1) High-Altitude Electromagnetic Pulse
(HEMP) and Its Impact on the US Power Grid. Technical report Meta-R-320,
Metatech Corporation, Goleta ,
California (2010)
142.
R.R.
Scarabucci, Interpretation of VLF Signals Observed on the OGO-4
Satellite (Stanford University, Stanford, 1969)Google Scholar
143.
R.L. Smith,
Propagation characteristics of whistlers trapped in field-aligned columns of
enhanced ionization. J. Geophys. Res. 66(11), 3699–3707 (1961). doi:10.1029/JZ066i011p03699ADSCrossRefGoogle Scholar
144.
A.J. Smith, M.A.
Clilverd, Magnetic storm effects on the mid-latitude plasmasphere. Planet.
Space Sci. 39(7),
1069–1079 (1991). doi:10.1016/0032-0633(91)90114-PADSCrossRefGoogle Scholar
145.
V.S. Sonwalkar,
U.S. Inan, Measurements of siple transmitter signals on the DE 1 satellite:
wave normal direction and antenna effective length. J. Geophys. Res. 91(A1), 154 (1986). doi:10.1029/JA091iA01p00154ADSCrossRefGoogle Scholar
146.
V.S. Sonwalkar,
U.S. Inan, T.F. Bell, R.A. Helliwell, V.M. Chmyrev, Y.P. Sobolev, O.Y.
Ovcharenko, V. Selegej, Simultaneous observations of VLF ground
transmitter signals on the DE 1 and COSMOS 1809 satellites: detection of a
magnetospheric caustic and a duct. J. Geophys. Res. 99(A9), 17511 (1994). doi:10.1029/94JA00866ADSCrossRefGoogle Scholar
147.
M.J. Starks, R.A.
Quinn, G.P. Ginet, J.M. Albert, G.S. Sales, B.W. Reinisch, P. Song,
Illumination of the plasmasphere by terrestrial very low frequency
transmitters: model validation. J. Geophys. Res. Space Phys. 113(A9), A09320 (2008). doi:10.1029/2008JA013112ADSGoogle Scholar
148.
M.J. Starks, T.F.
Bell, R.A. Quinn, U.S. Inan, D. Piddyachiy, M. Parrot, Modeling of
Doppler-shifted terrestrial VLF transmitter signals observed by DEMETER.
Geophys. Res. Lett. 36(12),
12103 (2009). doi:10.1029/2009GL038511ADSCrossRefGoogle Scholar
149.
A.V. Streltsov, M.
Gołkowski, U.S. Inan, K.D. Papadopoulos, Propagation of whistler mode waves
with a modulated frequency in the magnetosphere. J. Geophys. Res. 115(A9), 09209 (2010). doi:10.1029/2009JA015155CrossRefGoogle Scholar
150.
B.T. Tsurutani,
R.M. Thorne, A skeptic’s view of PLR effects in the magnetosphere. Adv. Space
Res. 1(2),
439–444 (1981). doi:10.1016/0273-1177(81)90318-5ADSCrossRefGoogle Scholar
151.
B.T. Tsurutani,
E.J. Smith, S.R. Church, R.M. Thorne, R.E. Holzer, in Does ELF Chorus
Show Evidence of Power Line Stimulation? ed. by P.J. Palmadesso, K.
Papadopoulos (Springer, Dordrecht, 1979), pp. 51–54. doi:10.1007/978-94-009-9500-0_5Google Scholar
152.
R.R. Unterberger,
P.E. Byerly, Magnetic effects of a high-altitude nuclear explosion.
J. Geophys. Res. 67(12),
4929–4932 (1962). doi:10.1029/JZ067i012p04929ADSCrossRefGoogle Scholar
153.
A.L. Vampola,
Electron precipitation in the vicinity of a VLF transmitter. J. Geophys.
Res. 92(A5),
4525 (1987). doi:10.1029/JA092iA05p04525ADSCrossRefGoogle Scholar
154.
A.L. Vampola,
In-situ observations of magnetospheric electron scattering by a VLF
transmitter. J. Atmos. Terr. Phys. 52(5), 377–384 (1990). doi:10.1016/0021-9169(90)90106-WADSCrossRefGoogle Scholar
155.
J.A.
Van Allen, The geomagnetically trapped corpuscular radiation.
J. Geophys. Res. 64(11),
1683–1689 (1959). doi:10.1029/JZ064i011p01683ADSCrossRefGoogle Scholar
156.
J.A.
Van Allen, Lifetimes of geomagnetically trapped electrons of several MeV
energy. Nature 203(4949),
1006–1007 (1964). doi:10.1038/2031006a0.ADSCrossRefGoogle Scholar
157.
J.A.
Van Allen, in Spatial Distribution and Time Decay of the
Intensities of Geomagnetically Trapped Electrons from the High Altitude Nuclear
Burst of July 1962, ed. by B.M. McCormac (Springer, Dordrecht, 1966), pp.
575–592. doi:10.1007/978-94-010-3553-8_42Google Scholar
158.
J.A.
Van Allen, in Energetic Particles in the Earth’s External Magnetic
Field, ed. by C.S. Gillmor, J.R. Spreiter (American Geophysical Union,
Washington, 1997), pp. 235–251. doi:10.1029/HG007p0235Google Scholar
159.
J.A.
Van Allen, L.A. Frank, Radiation around the Erth to a radial distance of
107,400 km. Nature 183(4659), 430–434 (1959). doi:10.1038/183430a0ADSCrossRefGoogle Scholar
160.
J.A.
Van Allen, G.H. Ludwig, E.C. Ray, C.E. McIlwain, Observation of high
intensity radiation by satellites 1958 alpha and gamma (Explorers I
and III ). Jet Propuls. 28(9), 588–592 (1958). doi:10.2514/8.7396CrossRefGoogle Scholar
161.
J.A.
Van Allen, C.E. McIlwain, G.H. Ludwig, Satellite observations of electrons
artificially injected into the geomagnetic field. Proc. Natl. Acad. Sci.
USA 45(8),
1152–1171 (1959a)ADSCrossRefGoogle Scholar
162.
J.A.
Van Allen, C.E. McIlwain, G.H. Ludwig, Radiation observations with
satellite 1958 εε.
J. Geophys. Res. 64(3),
271–286 (1959b). doi:10.1029/JZ064i003p00271ADSCrossRefGoogle Scholar
163.
J.A.
Van Allen, C.E. McIlwain, G.H. Ludwig, Satellite observations of electrons
artificially injected into the geomagnetic field. J. Geophys. Res. 64(8), 877–891 (1959c). doi:10.1029/JZ064i008p00877ADSCrossRefGoogle Scholar
164.
J.A.
Van Allen, L.A. Frank, B.J. O’Brien, Satellite observations of the
artificial radiation belt of July 1962. J. Geophys. Res. 68(3), 619–627 (1963). doi:10.1029/JZ068i003p00619ADSCrossRefGoogle Scholar
165.
C.N. Vittitoe, Did
high-altitude EMP cause the Hawaiian streetlight incident? System
Design and Assessment Notes (1989)
166.
J. Wait,
Propagation of ELF electromagnetic waves and project Sanguine/Seafarer. IEEE J. Ocean . Eng. 2(2), 161–172 (1977). doi:10.1109/JOE.1977.1145337CrossRefGoogle Scholar
167.
M. Walt, The
effects of atmospheric collisions on geomagnetically trapped electrons.
J. Geophys. Res. 69(19),
3947–3958 (1964). doi:10.1029/jz069i019p03947.ADSCrossRefGoogle Scholar
168.
M. Walt, in From
Nuclear Physics to Space Physics by Way of High Altitude Nuclear Tests, ed.
by C.S. Gillmor, J.R. Spreiter (American Geophysical Union, Washington 1997),
pp. 253–263. doi:10.1029/HG007p0253Google Scholar
169.
E.P. Wenaas,
Spacecraft Charging Effects on Satellites Following Starfish Events. Technical
report RE-78-2044-057, JAYCOR, Alexandria , Virginia
(1978)
170.
Wikipedia
Contributors, High-altitude nuclear explosion (Wikipedia, The
Free Encyclopedia, 2016)
171.
D.J. Williams, J.F.
Arens, L.J. Lanzerotti, Observations of trapped electrons at low and high
altitudes. J. Geophys. Res. 73(17), 5673–5696 (1968). doi:10.1029/ja073i017p05673ADSCrossRefGoogle Scholar
172.
G. Xin, F. Zhan-zu,
C. Xin-yu, Y. Sheng-sheng, Z. Lei, Performance evaluation and prediction of
single-junction and triple-junction GaAs solar cells induced by electron and
proton irradiations. IEEE Trans. Nucl. Sci. 61(4), 1838–1842 (2014). doi:10.1109/TNS.2014.2306991ADSCrossRefGoogle Scholar
173.
K.A. Zawdie, J.D.
Huba, D.P. Drob, P.A. Bernhardt, A coupled ionosphere-raytrace model for high-power
HF heating. Geophys. Res. Lett. 42(22), 9650–9656 (2015). doi:10.1002/2015GL066673ADSCrossRefGoogle Scholar
174.
A.J. Zmuda, B.W.
Shaw, C.R. Haave, VLF disturbances caused by the nuclear detonation of October 26, 1962 . J. Geophys. Res. 68(13), 4105–4114 (1963). doi:10.1029/JZ068i013p04105ADSCrossRefGoogle Scholar
Copyright information
© Springer
Science+Business Media Dordrecht 2017
About
this article
·
Publisher NameSpringer Netherlands
·
Print ISSN0038-6308
·
Online ISSN1572-9672
Log
in to check access
Buy
(PDF)
·
Unlimited access to the full article
·
Instant download
·
Include local sales tax if applicable
Get Access to
Space Science Reviews
for the whole
of 2017
Export
citation
Share
article
·
Email
·
Facebook
·
Twitter
·
LinkedIn
Over 10 million scientific documents at your
fingertips
Academic
Edition
©
2017 Springer International Publishing AG. Part of Springer
Nature.
BE WELL. GEOFF
No comments:
Post a Comment
Note: only a member of this blog may post a comment.